
pgm-std Revision: Basic
2/19/98

Programming Standards Document

Checkout and Launch Control Systems (CLCS)

84K07500-010

Approval:

Chief, Hardware Design
Division

Date Chief, System Engineering
and Integration Division

Date

Chief, Software Design
Division

Date CLCS Project Controls
Office

Date

Chief, System
Applications Division

Date Project Manager, CLCS Date

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

i

PREPARED BY:

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

ii

REVISION HISTORY

REV DESCRIPTION DATE

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

iii

LIST OF EFFECTIVE PAGES

Dates of issue of change pages are:

Page No. A or D* Issue or Change No. CR No. Effective Date**

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

iv

Table of Contents

1. INTRODUCTION... 1-1

1.1 PURPOSE .. 1-1
1.2 SCOPE ... 1-1
1.3 AUTHORITY... 1-2
1.4 APPLICABILITY... 1-2
1.5 STANDARDS MODIFICATION ... 1-2
1.6 REFERENCE RESOURCES .. 1-2

2. NAMING CONVENTIONS.. 2-3

2.1 NAME CONTROL... 2-3
2.2 EXECUTABLE PROGRAM NAMING CONVENTION.. 2-3

2.2.1 System Field .. 2-3
2.2.2 Alpha/Numeric Identifier Field .. 2-3

2.3 FILE NAMING CONVENTIONS .. 2-4
2.3.1 Required Files ... 2-4
2.3.2 File Names .. 2-4
2.3.3 Source Code Filename Extensions ... 2-4
2.3.4 LIBRARY FILE NAMING CONVENTIONS ... 2-5

2.4 CLASS / FUNCTION / VARIABLE NAMING CONVENTIONS.. 2-5
2.4.1 Naming Conventions ... 2-5
2.4.2 Naming Recommendations .. 2-6

3. PROGRAMMING RULES AND RECOMMENDATIONS.. 3-7

3.1 FILE ORGANIZATION... 3-7
3.1.1 Source Code Contents ... 3-7
3.1.2 File Size .. 3-7
3.1.3 Line Length ... 3-8
3.1.4 Include File Contents .. 3-8
3.1.5 Multiple Inclusion Prevention ... 3-8

3.2 SOURCE CODE COMMENTS.. 3-8
3.2.1 Comment Maintenance .. 3-8
3.2.2 Comment Syntax.. 3-9
3.2.3 Strategic Comments .. 3-9

3.3 OPTIMIZATION.. 3-9
3.3.1 Condition Assertion... 3-9
3.3.2 Performance Enhancements .. 3-10

3.4 PORTABILITY.. 3-10
3.4.1 Main Routine Form ... 3-10
3.4.2 Program Exit Codes .. 3-10
3.4.3 Object Size Determination ... 3-10
3.4.4 Pointer Difference Calculation .. 3-11
3.4.5 User Unique Data ... 3-11
3.4.6 Int Data Type .. 3-11
3.4.7 System Calls .. 3-11
3.4.8 External File References ... 3-11
3.4.9 Temporary Files .. 3-11

4. C/C++ CODING STANDARDS.. 4-12

4.1 GENERAL CODING.. 4-12
4.1.1 Braces Placement .. 4-12
4.1.2 Parenthesis Placement .. 4-12

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

v

4.1.3 Operator Usage... 4-12
4.1.4 Flow Control Statements ... 4-13
4.1.5 Memory Allocation .. 4-14
4.1.6 Standard Error Handling .. 4-14

4.2 CLASS CODING (C++ ONLY)... 4-15
4.2.1 Required Class Functions.. 4-15
4.2.2 Member Function Rules and Recommendations ... 4-16
4.2.3 In-Line Member Function Rules and Recommendations .. 4-19
4.2.4 Member Attribute, Variables and Constants .. 4-19

4.3 AUTO GENERATED DOCUMENTATION .. 4-20

5. MAKEFILES... 5-21

5.1 TARGETS.. 5-21
5.1.1 Clean Target ... 5-21
5.1.2 All Target .. 5-21
5.1.3 Default Target ... 5-21
5.1.4 Makedepend Target ... 5-21

5.2 TAGS ... 5-21
5.3 MACROS... 5-22

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

1-1

PROGRAMMING STANDARD INTRODUCTION

CHECKOUT AND LAUNCH CONTROL SYSTEMS (CLCS)

1. INTRODUCTION

Consistent program style is necessary to improve maintainability, portability and to reduce
errors. This standard provides the rules to aid in reaching this consistency across the software
development organizations. These rules shall be followed without exception, and are clearly
identified in this document. Also included are recommendations which are strong suggestions
of style guidelines designed to further support the rules and which are clearly identified in this
document. Ultimately, the goal of these standards is to provide the coding style rules and
recommendations to increase portability, reduce maintenance and above all improve clarity in
a single reference.

1.1 PURPOSE

The purpose of this standard is to define one style of programming in C/C++ for CLCS. The
standards and recommendations presented here should serve as the basis for continued
software development in these languages. This collection of standards should be viewed as a
living document; and will be updated as required.

All software shall adhere to the current revision of the standards document at the time of
software development. Revisions to the standards document shall not drive CLCS software
updates unless explicitly directed.

Software developed to these standards and should be correct and easy to maintain. In order
to attain these goals, the programs should:
 a) Have a consistent style
 b) Be easy to read and understand
 c) Be maintainable by different programmers
 d) Be portable to other architectures/platforms

1.2 SCOPE

This standard applies to all Software developed or maintained for use in the Checkout Launch
Control System (CLCS) project at the Kennedy Space Center. The standard covers
programming style including naming conventions, program layout, syntax style and class
(C++) design consideration. Program design and architecture are beyond the scope of this
document.

This document contains both rules and recommendations on software programming practices
which are clearly identified as such. Sections designated as rules must be adhered to without
exception, unless specified in this document. Recommendations are provided as a guide for

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

1-2

developing all software in as common a style as possible without imposing unnecessary
restrictions. Adherence to the recommendations is suggested, but is not mandatory.

1.3 AUTHORITY

This document is controlled by the Checkout and Launch Control System (CLCS) Project
Manager or the appointed representative.

1.4 APPLICABILITY

This standard applies to all Real Time Control (RTC) Application and System Software
developed for the CLCS.

1.5 STANDARDS MODIFICATION

A form for requesting new rules or changes to the rules of this standard has been included as
an appendix to this document. All requests must be submitted to the Software Architecture
Team or the appointed representative for evaluation.

1.6 REFERENCE RESOURCES

The following references were used in compiling the rules and recommendations of this
standard:

Software and Automation Systems Branch C++ Programming Style, Version 1.0
Automation Systems Branch (Code 522), Goddard Space Flight Center,
July 1992.

Programming in C++, Rules and Recommendations
Ellemtel Telecommunication Systems Laboratories, Alvsjo, Sweden, 1992.

Recommended C Style and Coding Standards
Bell Labs, Zoology Computer Systems, University of Toronto,
CS University of Washington, 1989.

Writing Solid Code
Steve Maguire, Microsoft Press, Redomond, Washington, 1993.

C++ Programming Style
Tony Cargill, Addison-Wesley Publishing, Reading, Massachusetts, 1992.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

2-3

2. NAMING CONVENTIONS

This section of the CLCS Software Standard defines the alphanumeric system for assigning
names to the software used to monitor and control the Space Shuttle, its elements and related
Ground Support Equipment (GSE) from the CLCS.

2.1 NAME CONTROL

The KSC NASA and contractor organizations responsible for the development of software
shall also be responsible for the tracking of all program names. A register of all assigned
names shall be maintained and no program name shall be reused once it has been issued. The
mechanism for assigning program names shall be at the discretion of the responsible
Engineering groups.

2.2 EXECUTABLE PROGRAM NAMING CONVENTION

RULE: All software executable program names shall be a maximum of 32 characters in
length including the extension.

RULE: Two fields shall be used to define the owner and purpose of the program as defined
in the following sections. The program name shall be formatted as follows:

SYS_[Alpha/Numeric Identifier]

2.2.1 System Field

RULE: The first three characters of the name field shall identify the system associated with
the program followed by an underscore delimiter. The system fields defined by the
responsible engineering groups are as follows:

RTC Application Software Acronyms

The acronyms for Application Software CSCI’s can be found on the CLCS web site by
following the CSCI link from the home page.

CLCS System Software CSCI Acronyms

The acronyms for System Software CSCI’s can be found on the CLCS web site by following
the CSCI link from the home page.

2.2.2 Alpha/Numeric Identifier Field

RULE: The alpha/numeric identifier field shall be a unique maximum 28 character string for
the program (excluding the extension).

RECOMMENDATION: This field may be used to further define the functionality of the
software. It may be a functional description of the software and have unique subsystem
identification traits. Each engineering system should determine the character pattern that best
fits their system, and document the character pattern template in the requirements. Valid

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

2-4

characters for this field shall include the upper and lowercase alpha characters (A-Z, a-z),
numerals 0 through 9 (0-9), underscore(_), ampersand (&) and period (.).

2.3 FILE NAMING CONVENTIONS

The purpose of these conventions is to provide a uniform interpretation of file names. One
reason for this is that it is easier to develop and/or use tools which base their behavior on file
name extensions.

2.3.1 Required Files

RULE: Each class shall be represented by two source code files: the interface definition (or
header) file and the implementation file.

Approved Exception: Two closely interrelated classes may be combined into a single pair of
header and implementation files.

2.3.2 File Names

RECOMMENDATION: Always give a file a name that is unique in as large a context as
possible. Since class names must generally be unique within a large context, it is appropriate
to utilize this characteristic when naming its implementation and header files. This convention
makes it easy to locate a class definition using a file-based tool.

RULE: A header file shall have the same name as its associated implementation file (e.g.
BaseClass.C and BaseClass.h)

RULE: Interface definition (header) files shall not have filenames that have a system
complement (e.g. “math.h” and <math.h>).

Since the quotes and brackets define the search path for the file, the statement #include
“math.h” will include the standard library math include file if the intended one is not found in
the current directory.

2.3.3 Source Code Filename Extensions

RULE: The extensions listed in the following table shall be used for all source code files.

CLCS Extensions for Filenames

<fn>.a Archive or library file <fn>.mak Make file
<fn>.b Static binary file <fn>.m1 SL executable file
<fn>.c C source code file <fn>.man Manual page
<fn>.C C++ source code file <fn>.mpp Microsoft Project
<fn>.cpp C++ file <fn>.o Object file
<fn>.csh C-shell script <fn>.pdf Adobe Acrobat file
<fn>.doc MS Word document <fn>.pl Perl file
<fn>.ksh K-shell script <fn>.ppt Powerpoint file
<fn>.g SL source file <fn>.ps Postscript file

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

2-5

<fn>.gif GIF graphic file <fn>.s Assembly language file
<fn>.h Header or include file <fn>.sh Bourne shell script file
<fn>.htm HTML file <fn>.so Shared Object file
<fn>.html HTML file <fn>.t Manual page
<fn>.java JAVA file <fn>.txt Static text file
<fn>.jpg JPEG graphic file <fn>.xls MS Excel document

2.3.4 LIBRARY FILE NAMING CONVENTIONS

RECOMMENDATION: Library filenames should be unique in as large a context as possible.
The name should reflect the function of the library, as well as indicate that it is a library.

2.4 CLASS / FUNCTION / VARIABLE NAMING CONVENTIONS

This section defines the conventions for naming classes, functions and variables. When
naming a class, function or variable, the names should be as clear as possible. The goal should
be to make the user’s interface conceptually transparent. The code will be more
understandable and readable when names are closely related with their associated purpose.

2.4.1 Naming Conventions

RULE: All names shall be mixed case with the initial letter of each word capitalized (e.g.
BaseClass), with further distinction by Type as defined with the exception of constants.

RULE: Names that differ only by the use of upper-case and lower-case letters shall not be
used.

RULE: Underscores shall not be used in any user application name.

RULE: Preface pointer variables with the character ‘p’.
The difference between a pointer, object and a reference to an object is important for
understanding the code, e.g. int *pNumber;.

RULE: Preference reference variables with the character ‘r’.
The difference between variable types is clarified. This establishes the difference between a
method returning a modifiable object and the same method name returning a non-modifiable
object, e.g. Status& rStatus;.

RULE: The following six conventions shall be followed for all class, function and variable
names.

1. Abstract base classes shall begin with a capital ‘V’ with the first letter of each word
capitalized thereafter (e.g. VBaseClass).

2. Function names shall be mixed case with the initial letter of each word capitalized (e.g.
OpenValve).

3. Class member attributes shall begin with a lower-case ‘m’ with the first letter of each word
capitalized thereafter (e.g. mMemberObject).

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

2-6

4. Global variables (which should be avoided if at all possible) shall begin with a lower-case
‘g’ with the first letter of each word capitalized thereafter (e.g. gGlobalVariable).

5. Local variables shall begin with the first word in lower-case with the first letter of each
word capitalized thereafter (e.g. internalVariable).

6. Constants (const and enum) and macros shall be named in all upper-case letters (e.g.
MAXPRESS).

2.4.2 Naming Recommendations

The following conventions should be followed when naming classes, functions and variables.
Adherence to these suggestions will greatly enhance the maintainability of the software.

RECOMMENDATION: Choose names that suggest the usage. One rule of thumb is that a
name which cannot be pronounced is a bad name. A long name is normally better than a
short, cryptic one, but the truncation problem must be taken into consideration.
Abbreviations can always be misunderstood. Global variables, functions and constants should
have long enough names to avoid name conflict, but not unreasonably long.

RECOMMENDATION: Names should not include abbreviations that are not generally
accepted.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

3-7

3. PROGRAMMING RULES AND RECOMMENDATIONS

This section identifies the format to be used for CLCS Application Software that is not
automatically generated.

3.1 FILE ORGANIZATION

3.1.1 Source Code Contents

RULE: Each CLCS source code file shall contain nine sections of data in a specified order.
For consistency, each section shall be identified by a comment containing the section. If a
section does not apply, a comment shall be included following the title which indicates “This
section not applicable”.

RULE: Each source code file shall have the following ordered sections preceded by a section
title. The sections are defined as:

1. Introductory Comment containing:
 /* Introduction */
• Name: Function name
• Description: A brief description of the purpose
• Notes: Refer to Appendix A-1 for a description
• Warnings/Limitations: Refer to Appendix A-1
• Revision History: Most recent revision is at the top and includes the

 Ending Revision, WAD and description of the change,
Programmer, Organization, and date.

• Copyright (Year)National Aeronautics and Space Administration, All rights
 reserved. Where Year represents the year the baseline revision was created.

2. System include files (e.g. <iostream.h>)
3. Application specific include files (e.g. “VBaseApplication.h”)
4. External functions
5. External variables
6. Constants
7. Macros
8. Class Declarations
9. Non-member functions

3.1.2 File Size

RECOMMENDATION: File size should be limited to approximately 1000 lines of source
code. Although there is no real maximum length for source files, those with more than 1000
lines are cumbersome to deal with. Editors may not have enough temporary space to edit the
file and compilations will go slower.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

3-8

3.1.3 Line Length

RECOMMENDATION: Line lengths should be limited to 79 columns. Lines longer than 79
columns are not handled well by all terminals and should be avoided if possible. Excessively
long lines which result from deep indentation are often a symptom of poorly organized code.

Source code lines should not wrap unless absolutely necessary, as in the definition of a long
literal. This can lead to confusion about program structure.

3.1.4 Include File Contents

RULE: An application include file shall contain only the necessary include files to support the
classes referenced in the file. It is more maintainable to have all supporting files automatically
included when a class include file is used than requiring the user to remember to include those
support files.

RULE: A .h file shall include only the files required to compile the .h file.
Extraneous .h files will increase compilation time. This will be significant considering .h files
are frequently compiled. Unlike .C files which are compiled to object code and then linked, .h
files are compiled every time they are included. Some compiler venders combat this problem
with pre-compiled headers where the .h file, when successfully compiled, produces an output
file that contains symbol table information. Subsequent compilations that include the .h file
will save time by utilizing the previously generated symbol table information rather than
regenerating it.

3.1.5 Multiple Inclusion Prevention

RULE: Every include file shall contain a mechanism that prevents multiple inclusions of the
file.

RECOMMENDATION: The easiest way to avoid multiple file includes is to use a #ifndef /
#define block at the beginning of the file and #endif at the end of the file.

3.2 SOURCE CODE COMMENTS

RECOMMENDATION: It is essential to document source code to capture the thought
processes behind the software development. It may also be helpful to include a requirements
tracking cross-reference. This should be compact and easy to find. By properly choosing
names for variables, functions and classes and by properly structuring the code, there is less
need for lengthy comments within the code. An example of the function comment header is
provided in Appendix A-2.

Note that comments in include files are meant for the users of classes, while comments in
implementation files are meant for those who maintain the code. A tactical comment
describes what a single line of code is intended to do and is placed, if possible, at the end of
the line. Unfortunately, too many tactical comments can render the code unreadable.

3.2.1 Comment Maintenance

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

3-9

RULE: Comments shall be maintained with the same attention as the associated code.

RECOMMENDATION: It is extremely important to keep comments in synchronization with
the code. Comments that disagree with the code are of negative value.

3.2.2 Comment Syntax

RECOMMENDATION: Use the “//” syntax for all comments (C++ compilers only). If the
characters “//” are used consistently for writing comments, then the combination of “/* */”
may be used to make comments out of entire sections of code during development and debug
phases. An example of the section comment header is provided in Appendix A-3.

3.2.3 Strategic Comments

A strategic comment describes what a function or section of code is intended to do and is
normally placed before the code.

RULE: All strategic comments shall appear before the section of code they document.

RULE: Every function shall contain a strategic comment before the function declaration
explaining its purpose and anything special about the function.

RECOMMENDATION: Putting a comment at the top of a 3 - 10 line section explaining the
purpose of the code is often more useful than a comment on each line describing the
micrologic. It is also helpful to add a comment for the parameter list which describes the
purpose of each parameter.

3.3 OPTIMIZATION

Program performance may be enhanced or improved through the process of optimization.
The application should be studied to identify the important measures, i.e. worst case timing
and operation frequencies. Assess the trade-offs of alternative implementations as they relate
to memory, speed, and simplicity of implementation prior to making optimization
modifications. This section provides the recommendations to be followed for code
optimization.

3.3.1 Condition Assertion

RECOMMENDATION: The assert macro (contained in <assert.h>) should be used whenever
possible to assist in the detection and isolation of errors. assert is a debug-only macro that
aborts execution if its argument is false. assert should not disturb memory or initialize data
that would otherwise be uninitialized or cause any other side effects.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

3-10

3.3.2 Performance Enhancements

RECOMMENDATIONS: Optimize code only if it has a known performance problem.
Industry tests have demonstrated that a lot of time is spent optimizing code that is seldom or
never executed. It is important to identify and modify only the portions of the code that are
affected since optimization compromises extensibility, reusability, and understandability.

Performance measurement development tools (e.g. Pure Software, Quantify, CenterLine
TestCenter) should be used to provide performance measurements that can be used to
improve performance and isolate run-time errors.

3.4 PORTABILITY

C/C++ code is not inherently portable. Thought and effort are required to make it so. As a
general practice, all other things being equal, portable code is better than non-portable code.
This section provides the rules and recommendations for portability standardization.

3.4.1 Main Routine Form

RULE: The heading for main shall be defined as either:
int main (void)
int main (int argc, char *argv[])

These are the forms explicitly sanctioned by the ANSI-C standard. Other common forms,
such as
void main (void) only work on some platforms.

3.4.2 Program Exit Codes

RULE: The constants EXIT_SUCCESS and EXIT_FAILURE shall be used as program exit
codes.

 Calling exit(0) is portable, but exit(1) is not. A return statement in main effectively calls exit,
so main should normally return EXIT_SUCCESS. These constants are defined in <stdlib.h>.

3.4.3 Object Size Determination

RULE: The generic type size_t (defined in several standard headers) shall be used as the type
of an object that holds the size of another object.

size_t is always defined as an unsigned integer type, which varies from platform to platform.
unsigned long int could be used in place of size_t, but it may be wasteful on some
architectures. size_t is always the right size (e.g. size_t strlen (const char*)).

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

3-11

3.4.4 Pointer Difference Calculation

RULE: When the difference between two pointers is required, the value shall be stored in an
object of type ptrdiff_t (defined in <stddef.h>).

Each implementation defines ptrdiff_t as a signed integer type of the appropriate size for the
target architecture.

3.4.5 User Unique Data

RECOMMENDATION: The generic types of void* and void(*)() should be used for user
unique data objects and functions. The void* type is guaranteed to have enough bits of
precision to hold a pointer to any data object. The void(*)() type is guaranteed to be able to
hold a pointer to any function. Be sure to cast pointers back to the correct type before using
them.

3.4.6 Int Data Type

RECOMMENDATION: Be very careful defining data structures using the int data type. If a
stream moves data between platforms with different base register sizes (e.g. HP uses 32-bit,
DEC Alpha uses 64-bit), the effective size of the int will cause data structures to be
misaligned.

3.4.7 System Calls

RULE: System calls shall not be used that are platform dependent.

3.4.8 External File References

RULE: Always specify the full pathname for all files and/or programs used.

RECOMMENDATION: When referencing external files and/or programs, specify the path
using either a configuration file or environment variable. Avoid hard-coded pathnames. The
use of hard-coded pathnames will cause the re-code of modules when the file structure
changes. Also, do not assume a user’s PATH variable includes the directory for what should
be a common file.

3.4.9 Temporary Files

RECOMMENDATIONS: When using temporary files, use the UNIX function tempnam to
ensure unique filenames.

Use a directory other than /tmp for temporary file storage. On some systems, the /tmp
directory usage is restricted by the System Administrator. Using this directory to store
temporary files in this circumstance will cause the read/write to fail.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-12

4. C/C++ CODING STANDARDS

This section of the CLCS Application Software Standard defines the coding standards to be
used in the application software.

4.1 GENERAL CODING

This section defines the general coding standards which will assist in keeping consistency
across the different application sets.

4.1.1 Braces Placement

RULE: Braces “{ }” which enclose a code block shall be placed in the same column on
separate lines directly before and after the block, in the following:

if (condition == TRUE)
{

fTrueFunction1();
fTrueFunction2();

}
else
{

fFalseFunction1();
fFalseFunction2();

}

4.1.2 Parenthesis Placement

RULE: Parentheses shall be placed adjacent to methods, not keywords.
Parenthesis placement will lend to the readability of code, and making it easier to distinguish
between a function and a keyword.
E.g. Keyword: if (expression); method: strcpy(s1,s2);

4.1.3 Operator Usage

RULE: Spaces around the “.” and “->“ operators shall not be used.

RULE: Floating point comparisons shall use the >= or <= operators.
Floating point comparisons should always be made with the >= and <= operators rather than
the equality operators (==, !=) because the underlying representation and precision for
floating point values may differ from machine to machine and may not be exact. E.g. 25.38
may be represented as 25.376 or 25.3834.

RULE: The constant shall be placed on the left hand side of a comparison.
E.g. if (constant == variable). If one of the operators is omitted, the error will be caught at
compile time. For readability, clarity, and maintenance, the value being checked is the first
item in the expression versus being lost at the end of the source code line or the next line.

RULE: Blocks of attribute and variable declarations and initializations shall be vertically
aligned to promote clarity and readability.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-13

RULE: Pointer arithmetic must be well documented.
In general, pointers are a cause of numerous software development errors. Any manipulation
of pointers should be performed with extreme care and scrutiny. Documenting the purpose
for pointer arithmetic provides ease in maintaining the source code.

4.1.4 Flow Control Statements

This section defines the rules and recommendations for controlling the flow of program
execution.

RULE: Only one statement shall be included per line of source code.

RULE: The code following a case label shall always be terminated by a break/return
statement.
When several case labels are followed by the same block of code, only one break/return
statement is required. If the code which follows a case label is not terminated by a
break/return, the execution continues after the next case label. This means that poorly tested
code can be erroneous and still seem to work.

RULE: A switch statement shall always contain a default branch which handles unexpected
cases.

RECOMMENDATION: The flow control statements while, for and do should be followed by
a code block, even if it is empty.

Although everything that is to be performed in a loop can sometimes easily be written on one
line in the loop statement, concluded with a semicolon at the end of the line, this may lead to
misreading of the code since the semicolon may be missed. It is better to place an empty
block of code following the statement to completely clarify the code.

RECOMMENDATION: Error handling needs to be addressed here.

RECOMMENDATION: Use the goto syntax with caution and deliberation.
goto breaks the control flow and can lead to code that is difficult to comprehend and maintain.
For extremely time critical applications, goto may be permitted. Every such usage must be
carefully motivated, and should be explained in a comment.

RECOMMENDATION: Use parenthesis to clarify the order of evaluation for operations in
expressions.
If the operator precedence is not obvious or the expression is complicated or long, use
parenthesis to make it more readable. Even if the parenthesis are not technically required,
make the order of evaluation obvious.

RECOMMENDATION: Check the fault codes which may be received from library functions
even if the function seems foolproof.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-14

Two important characteristics of a robust system are that all faults are reported and, if the
fault is so serious that continued execution is not possible, the process is terminated. In this
way the propagation of faults through the system is avoided. In achieving this, it is important
to always test fault codes from library functions (e.g. opening/closing files, allocation of
memory for data). One test too many is better than one test too few. Application specific
functions should preferably not return fault codes but should instead take advantage of
exception handling features.

4.1.5 Memory Allocation

RULE: malloc, realloc or free shall not be used for memory allocation (C++ only).
In C, malloc, realloc and free are used to allocate memory dynamically on the heap. This
may lead to conflicts with the use of the new and delete operators in C++. It is dangerous to:
1. Invoke delete for a pointer obtained via malloc/realloc.
2. Invoke malloc/realloc for objects having constructors.
3. Invoke free for anything allocated using new.

RULE: Empty brackets “[]” shall always be provided for delete when deallocating arrays
(C++ only).
If an array ‘p’ having a type ‘T’ is allocated, it is important to invoke delete in the correct
way:
1. (WRONG) delete p results in the destructor being invoked only for the first object of type

T.
2. (WRONG) delete [m] p where ‘m’ is an integer which might be greater than the number

of objects allocated earlier, the destructor for ‘T’ will be invoked for memory that does
not represent objects of type T.

3. (CORRECT) delete [] p is the correct way since the destructor will then be invoked only
for those objects which were allocated earlier.

RULE: Memory that is allocated shall be deallocated when it is no longer needed. Do not
allocate memory and expect that someone else will deallocate it later. For instance, a function
can allocate memory for an object which is then returned to the user as the return value for the
function. There is no guarantee that the user will remember to deallocate the memory, and the
interface with the function then becomes considerably more complex.

RULE: A pointer that points to deallocated memory shall always be assigned to a new value.
Pointers that point to deallocated memory should either be set to 0 or be given a new value to
prevent access to released memory. This can be a very difficult problem to solve when there
are several pointers which point to the same memory since C++ has no garbage collection.

RECOMMENDATION: Avoid frequently allocating and deallocating memory (C only) which
may cause memory fragmentation.

4.1.6 Standard Error Handling

Standard Error Handling needs to be addressed here.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-15

4.2 CLASS CODING (C++ ONLY)

While reading the following sections, it is important to understand the distinction between a
class declaration and a class definition.
• Class Declaration: A class declaration is contained in a .H file and gives the specification

of the class.
• Class Definitions: A class definition is contained in a .C file and identifies the class

implementation.

RULE: The public, protected and private sections of a class definition shall be declared in that
order.
Both member attributes and member functions shall be declared in the same appropriate
section. By placing the public section first, everything that is of interest to a user is gathered
at the beginning of the class definition. The protected section may be of interest to designers
when considering inheriting from the class. The private section contains details that should
have the least general interest.

RECOMMENDATION: Make classes as simple as possible.
Give each class a clear purpose. If classes grow too complicated, make more classes: break
complex classes into simpler ones.

RECOMMENDATION: Friends of a class should be used to provide additional functions that
are best kept outside of the class.
A friend is a non-member of a class that has access to the non-public members of the class.
Friends offer an orderly way of getting around data encapsulation for a class. Friends are
good if used properly, but the use of many friends can indicate that the modularity of the
system is poor.

RULE: Multiple inheritance shall not be used.
It is for getting out of bad situations, especially repairing interfaces where control over the
broken class belongs to someone else. The complexities of multiple inheritance override its
usefulness in most situations.

RECOMMENDATION: Polymorphism needs to be addressed here. No downcasting should
be used.

4.2.1 Required Class Functions

RULE: All class definitions shall have the constructor, destructor and assignment operator
(operator) defined.
Don’t let the compiler create these functions. Class designers should always say exactly what
the class should do and keep the class entirely under their control. If a copy constructor or
assignment operator is not desired, declare it private. Remember, if any constructor is
specified, it prevents the default constructor from being synthesized.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-16

EXCEPTION: The simplest of accessor functions may be defined inline in the class
declaration. E.g.:

class Example
{
public:

int getI() const {return (mI);}
void setI(int I) {mI = I);}

private:
int mI;

};
This reduces the number of lines of code. Across the project the code reduction will be
significant, and thereby reduce the cost. This savings should be realized without significantly
degrading the readability of the class declarations.

RULE: A class which uses new to allocate instances managed by the class shall define a copy
constructor.
A copy constructor is recommended to avoid surprises when an object is initialized using an
object of the same type. If an object manages the allocation and deallocation of objects on the
heap, only the value of the pointer will be copied. This can lead to two invocations of the
destructor for the same object, probably resulting in a run-time error.

RULE: All classes which are used as base classes shall define a virtual destructor.
If a class having virtual functions but without virtual destructors is used as a base class, there
may be a surprise if pointers to the class are used. If such a pointer is assigned to an instance
of a derived class and if delete is then used on the pointer, only the base class’ destructor will
be invoked. If the program depends on the derived class’ destructor being invoked, it will fail.

RULE: If a base class does not have a virtual destructor, no derived class nor members of a
derived class should have a destructor. If a derived class or member of a derived class
defines a destructor and the base class destructor remains non-virtual, memory leaks or other
abnormalities can occur.

4.2.2 Member Function Rules and Recommendations

RULE: Member functions shall only be prototyped within a class definition.
A member function that is defined within a class definition automatically becomes an in-line
function. Class definitions are less compact and more difficult to read when they include
definitions of member functions. It is easier for an in-line member function to become an
ordinary member function if its definition is placed outside of the class definition.

RULE: A member function that does not affect the state of an object shall be declared const.
Member functions declared as const may not modify member data and are the only functions
which may be invoked on a const object. A const declaration is excellent insurance that
objects will not be modified when they should not be. const member functions may never be
invoked as an “lvalue” (a location value where a value may be stored).

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-17

RULE: A public member function shall never return a non-const reference or pointer to
member data.
By allowing a user direct access to the private member data of an object, this data may be
changed in ways not intended by the class designer.

RULE: Inside a constructor, only initialize variables and/or actions which cannot fail.
Create initialization routines to complete construction. Constructors cannot return an error,
therefore object instantiators must check an object for errors after construction, which is often
forgotten. Throwing exceptions from a constructor may leave the object in an inconsistent
state.

RULE: All functions shall have a prototype definition.
This practice helps eliminate function calling errors that might otherwise have been avoidable.
This purpose can be strengthened by making the argument types more accurate (e.g. unsigned
ch instead of int). The drawback to this is that it may be necessary to cast arguments to
silence noncritical type mismatch warnings.

RULE: The names of formal arguments to functions shall be specified and are to be the same
in both the function declaration and in the function definition.
The names of formal arguments may be specified in both the function declaration and
definition in C++, even if these are ignored by the compiler in the declaration. Providing for
function arguments is part of the function documentation. The name of the arguments may
clarify how they are used, reducing the need to include comments for documenting that
purpose.

RULE: The return type of a function shall always be provided explicitly.
If no return type is explicitly provided, it is, by default, an int. To improve the readability and
clarity of the code, function return types must be specified.

RULE: A public function shall never return a reference or pointer to a local variable.
If a function returns a reference or pointer to a local variable, the memory to which it refers
will already have been deallocated when the reference or pointer is used. The compiler may
or may not give a warning of this.

RULE: When two operators are opposite (such as “==“ and “!=“), both shall be defined even
if only one is necessary.
Define one in terms of the other, e.g.

bool
Example::operator == (Example& rhs)
{
 // Test to see if the rhs (right hand side) is
 // equal to “this” instance.
 …
 return (retValue);
}

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-18

bool
Example::operator != (const Example& rhs)
{
 return (!(this == rhs));
}

RECOMMENDATION: When declaring functions, the leading parenthesis and the first
argument (if any) should be written on the same line as the function name.
If space permits, other arguments and the closing parenthesis may also be on the same line.
Otherwise, each additional argument should be written on a separate line (with the closing
parenthesis directly after the last argument).

RECOMMENDATION: Avoid functions with many arguments.
Functions having long lists of arguments look complicated, are difficult to read, and can
indicate poor design. In addition, they are difficult to read and to maintain.

RECOMMENDATION: Pass arguments by const reference as the first choice.
As long as the object being passed in does not need to be modified, this practice is best
because it has the simplicity of pass-by-value syntax but does not require expensive
constructions and destructions to create a local object.

RECOMMENDATION: If a function stores a pointer to an object which is accessed via an
argument, the argument should have the type pointer.
Use reference arguments in other cases. By using references instead of pointers as function
arguments, code can be made more readable, especially within the function. A disadvantage is
that it is not easy to see which functions change the values of their arguments.

RECOMMENDATION: Watch for overloading.
A function should not conditionally execute code based on the value of an argument (default
or not). In this case, two or more overloaded functions should be created.

RECOMMENDATION: Use overloaded function names instead of different function names to
distinguish between functions that perform the same operations on different data types.
Remember, C++ does not permit overloading on the basis of the return type.

RECOMMENDATION: Consider default arguments as an alternative to function overloading.
In general, replacing function overloading by a default argument makes a program easier to
maintain because there is only one copy of the function body (e.g. function A
(int a, char b, x=1)).

RECOMMENDATION: When overloading functions, all variations should be used for the
same purpose. Overloading of functions can be a powerful tool for creating a family of
related functions that only differ as to the type of data provided as arguments. If not used
properly (such as using functions with the same name for a different purpose), they can,
however, cause considerable confusion.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-19

RECOMMENDATION: Avoid long and complex functions.
If a function is too long it can be difficult to comprehend. Generally, it can be said that a
function should be no longer than two pages since that is about how much that can be
comprehended at one time.

If an error situation is discovered at the end of an extremely long function, it may be difficult
for the function to clean-up after itself and to “undo” as much as possible before reporting the
error to the calling function. By using short functions, such an error can be more exactly
localized. Complex functions are also much more difficult to test.

4.2.3 In-Line Member Function Rules and Recommendations

RULE: In-line functions shall not be defined in the interface definition (header) file for the
class.

RECOMMENDATION: Access and forwarding functions should be in-line member functions.
This will improve the performance of the class.

RULE: Constructors and destructors shall not be defined as in-line functions.
 A constructor always invokes the constructors of its base classes and member data before
executing its own code. This cascading of in-line constructors may be too complex for some
compilers to handle efficiently.

RULE: In-line functions and parameterized types shall be used instead of preprocessor
macros.
This allows more parameter checking to be performed at compilation.

RECOMMENDATION: Use of in-line functions in small programs can help performance.
Extensive use of in-line functions in large projects can actually hurt performance by enlarging
code, causing paging problems and forcing many recompilations.

4.2.4 Member Attribute, Variables and Constants

RULE: In variable declarations, the pointer qualifier (*) shall be with the variable name rather
than with the type.
Declare variables as char *s, *t, *u; rather than char* s, t, u; In the latter instance, only s is
declared as a character pointer.

RULE: Public member data shall not be specified in a class definition.
A public variable represents a violation of one of the basic principles of object oriented
programming, namely, data encapsulation. Access functions should be used to return values
of private member data. This avoids the possibility of an arbitrary function changing the
public data value which may lead to errors that are difficult to locate.

RULE: Symbolic values shall be defined instead of numeric values in code.
Numerical values in code can be the cause of difficult problems if and when it becomes
necessary to change a value. A large amount of code can be dependent on such a value never

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

4-20

changing and the value can be used at a number of places in the code, leading to difficulty in
locating all instances of them.

RULE: Constants shall be defined using const or enum instead of #define.
The preprocessor performs a textual substitution for macros in the source code which is then
compiled. This can lead to a number of negative consequences. Names declared with #define
are untyped and unrestricted in scope. In contrast, names declared with const are typed and
follow C++ scope rules.

RECOMMENDATION: Variables should be declared with the smallest possible scope.
A variable ought to be declared with the smallest scope possible to improve the readability of
the code and so variables are not unnecessarily allocated.

RULE: Every variable that is declared shall be given a value before it is used.
A variable must be initialized before it is used. Normally the compiler gives a warning if a
variable is undefined. Instances of a class are usually initialized even if no arguments are
provided in the declaration (the empty constructor is invoked). By initializing all variables
before they are used, the code is made more efficient since no temporary objects are created
for the initialization. For objects having large amounts of data, this can result in significantly
faster code. To declare a variable that has been initialized in another file, the keyword extern
is always used.

RULE: Pointers shall not be assigned a value of NULL and shall not be compared to NULL.
A value of 0 (zero) shall be used instead. According to the ANSI-C standard (and the
pending ANSI-C++ standard), NULL is defined as (void *)0 or as 0. This may lead to errors
unless an explicit type conversion is supplied.

RECOMMENDATION: Use unsigned for variables which cannot reasonably have negative
values.

4.3 AUTO GENERATED DOCUMENTATION

The DOC++ tool is being used to extract information from the source code to automatically
generate software documentation. Refer to the DOC++ Users Guide and examples found in
Appendix A.

Need to address code generated by COTS tools vs. Standards here.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

5-21

5. MAKEFILES

The following methods include support for using appropriate compiler flags which ensure
portability. It is strongly recommended that the application software standard Makefile
template is used.

5.1 TARGETS

5.1.1 Clean Target

RULE: All Makefiles shall include a clean target. The clean target restores the directory to
the state it would be in if the source had just been checked-out from the source code library.
The Makefile invokes the clean target for Makefiles in directories below it.

5.1.2 All Target

RULE: All Makefiles shall include an all target.
The all target makes everything in that directory. The Makefile invokes the all target for
Makefiles in directories below it.

5.1.3 Default Target

RULE: All Makefiles shall include a default target.
The default target must be the uppermost target in the Makefile. Its sole function is to remind
the user to invoke the Makefile through one of the appropriate targets.

5.1.4 Makedepend Target

RECOMMENDATION: All Makefiles should include a makedepend target to assist in the
setting of dependencies.
The makedepend target invokes the makedepend utility. The Makefile dependencies are then
automatically generated and added to the Makefile.

5.2 TAGS

RECOMMENDATION: Tags should be included in the Makefile when using the EMACS
editor.
The Tags function results in EMACS setting flags to identify function names, variable names,
etc. When you want to locate the definition of the function or variable, you simply click on
the name and EMACS searches for and displays the location of the definition.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

5-22

5.3 MACROS

The following macros shall be defined in all Makefiles:

RULE: The CC Macro shall be set to the requested compiler (cc, acc or gcc) along with a
switch indicating the optimize or debug level for the compiler.
A switch for ANSI-C and C++ is also available.

RULE: The LLIBS Macro gives the link library for C Code.
All libraries required for proper linking shall be included in this macro definition.

84K07500-010 Programming Standards Introduction Revision: Basic
2/19/98

5-23

